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Nonuniversal coarsening and universal distributions in far-from-equilibrium systems
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Anomalous coarsening in far-from-equilibrium one-dimensional systems is investigated by applying simu-
lation and analytic techniques to minimal hard-core partiebeclusiony models. They contain mechanisms of
aggregated particle diffusion, with rates<1, particle deposition into cluster gaps, but suppressed for the
smallest gaps, and breakup of clusters that are adjacent to large gaps. Cluster breakup rates vary with the
cluster lengthx askx®. The domain growth lawx) ~ (et)? with z=1/(2+a) for >0, is explained by a simple
scaling picture involving the time for two particles to coalesce and a new particle to be deposited. The density
of double vacancies, at which deposition and cluster breakup are allowed, scaleid(as?lL/Numerical
simulations for several values afand e confirm these results. A fuller approach is presented which employs
a mapping of cluster configurations to a column picture and an approximate factorization of the cluster
configuration probability within the resulting master equation. The equation for a one-variable scaling function
explains the above average cluster length scaling. The probability distributions of cluster lersgile as
P(x)=[1/(et)?]g(y), with y=x/(et)? which is confirmed by simulation. However, those distributions show a
universal tail with the formg(y) ~ exp(-y*3), which is explained by the connection of the vacancy dynamics
with the problem of particle trapping in an infinite sea of traps. The high correlation of surviving particle
displacement in the latter problem explains the failure of the independent cluster approximation to represent
those rare events.

DOI: 10.1103/PhysRevE.71.026110 PACS nuni$)er05.50:+q, 05.40-a, 68.43.Jk

I. INTRODUCTION vary with the exponents in the scaling of the cluster break
) . . ) probabilities, although the cluster length distributions are
_ Domain growth in far-from-equilibrium systems is a sub- njyersal. Consequently, these one-dimensional statistical
ject of increasing interest due to the large number of appliygdels, although not related to a specific real problem, re-
cations, such as phase separation of mixtures, dynamics gba| some interesting features that may help to understand
glasses, and island coarsening after thin film depositioRomplex three-dimensional systems, with the advantage of
[1-3]. In these systems, their dynamics is responsible fohging more tractable both analytically and numerically.
bringing them to steady states, while external agents act 0 The models presented here are nontrivial extensions of
d_rl\{e 'Fhem out_of eqwhbnur_n. Many statlstlcal_ models eX- inose analyzed in a recent papét, which include particle
hibit simple, universal domain growth laws, which are found giffysion, reversible aggregation to clusters, and deposition
in some real systems, but there is much interest in modelg,echanisms. In the original model, hard-core particles in a
with slow coarsening and with continuously varying growth 5ne_dimensional lattice have diffusion ratesd when they
exponents, for instance, due to their potential applications tQ,ere free(i.e., they have two empty nearest-neighbor 3ites
glassy systemf2—4]. _ _ _ and e=e~¢e¥T when they have one occupied nearest-
_In this paper, we will consider one-dimensional modelspejghpor site, withe<d [Fig. 1(a)]. The deposition rate is
with particle deposition apd diffusion, reversﬂ;le aggregatione=1 in ynits of monolayers per time step, and is restricted
to clusters, and mechanisms of cluster breaking, which shoyy, sites with at least one empty nearest neighay. 1(b)]
such a variety of domain growth laws. Cluster breaking may ¢ 5 site of a double or larger vacancy. These dynamical
be an effect of internal stress and was previously considereg,jes were motivated by the Clarke-Vvedensky model and
in studies of island growth in submonolay€df. In a real  rg|ated models of thin films or submonolayer growh, but

system subject to external pressure but with some type Qfcjyded effects of geometrical frustration that forbid filling
geometrical frustration other than those observed in islang¢ single vacancies. Domain growth in the foriu)

growth, it is expected that cluster breaking will compete With~6—1/2t1/2 was predicted analytically and from simulation
mechanisms of densification, these ones to be represented Eé/] The same model without deposition and in the lirit
vacancy filling (deposition of new particlgs However, the <1 showed domain growth ag”® before approaching a
onset of those processes depends on the formation of Iar%‘?eady staté].
vacancies due to th@low) diffusion of aggregated particles. Here, in addition to the processes of the original model
The coarsening exponents of those systems will be shown T?figs. ](,a) and 1b)], we will consider the competition be-
tween deposition of new particles and the breaking of a
neighboring cluster when a doubler largey vacancy ap-
*Email address: reis@if.uff.br pears. In this model, a cluster of lengthwith two vacancies
"Email address: r.stinchcombel@physics.ox.ac.uk at one of its sidegwhere deposition may also ocgunay
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FIG. 1. (a) Diffusion processes of free and aggregated particlesth FI(Z. 2. f(?)h Three typlclal r;elghbobnné] c\IAljthterfs,lwnthpLen?ttEs of
at the borders of clusters, with the respective diffusion rates. e order of the average cluster siz¢b) Gro ofcluster at the

Allowed deposition processes at vacancies with a neighboring vacXpense of clusteB, which is equivalent to the diffusion of the

cant site, with the respective rate, and the forbidden deposition pro\(acancy between them. For simplicity, the_ effective d|f'fu5|or_1 of the
cess, in which the vacancy has two occupied neightorghree of vacancy between clusteBsand C was not illustrated(c) Possible

the possible five configurations after the breakup of the cluster axiJeposition after collision of the two vacancies, extinction of cluster

the left side of the double vacancy, with the respective total ratel.3’ and coarsening of clustéx.

The breaking positions are indicated by a dashed line.
where the holes between clusters in the former problem cor-

break in two pieces, at a random internal position, with ratd®SPond to the particles in the latter. This connection leads to
kx*, where the exponent is a tunable parameter ahds a the above universal cluster length distribution and explains
constant amplitude. The process is illustrated in Fig) for ~ the failure of the independent cluster approximation to pre-
a cluster withx=6, with a total of five internal points for diCt those distributions.
its separation into two pieces. Our focus is the nontrivial 1 NiS Paper is organized as follows. In Sec. Il we present
casea >0, for which a-dependent coarsening exponents areN® scaling theory and obtain the coarsening exponents. In
obtained. Sec. lll we present the results of simulations for the time

Notice that this model is significantly different from other dePendence of average cluster lengths and density of double
models which involve coagulation or breakup of clustersv@cancies. In Sec. IV, we map the cluster configurations to a
with size-dependent rates with variable expondigs11]. column picture and determine the master equation with the
Here, the clusters slowly gain mass fmpnbiase diffusion independent interval approximation to the joint cluster length
at the expense of neighboring clusters, while breakup is sufRroPability. In Sec. V, we discuss the cluster length probabili-
ject to the availability of free space for its expansion. ties, comparing numerical results, the analytical prediction of

Scaling laws for the average cluster lengthin the form the independent interval approximation, and the connection
to the problem of one diffusing particle in a sea of moving

(X) ~ t2 (1)  traps. In Sec. VI, we summarize our results and present our
conclusions.

will be obtained, where is called the coarsening exponent.
In the models with the cluster breaking mechanism, the ex-
ponentz can be continuously tuned from 0 to 1/2 by varying
the scaling exponent of the rate of cluster breaking. This Here we will define our models and estimate coarsening
result is predicted by a scaling theory that also described thexponents using scaling arguments along the lines of Ref.
cluster growth laws of Ref6] and is confirmed by numeri- [6], which were previously adopted in the analysis of related
cal simulations with very good accuracy. It is also possible tasystems by Evang3] and introduced in the analysis of do-
describe such systems in terms of interval probabilitiesmain growth in magnetic systems by Lat al. [15] and
which allows an analytic investigation based on an indepenShoreet al. [16].
dent cluster approximation. Using this method, we also pre- First we consider the original model of deposition and
dict the coarsening exponents of the model. diffusion presented in Ref6] [Figs. 1a) and 1b)].

There is also much interest in knowing the distributions of  For simplicity, we will refer to the average cluster length
cluster lengths in such anomalously growing systems. Thosgs x. In Fig. 2a), we show a configuration with clusters of
distributions are also calculated numerically and show a unitengths typically of ordex, namedA,B, andC, with single
versal (a-independent form P(x) ~exp(-x%?), despite the empty sites(single vacancigsbetween them. Deposition is
fact that the coarsening exponents do depend.ofhe ana- not allowed at those vacancies, as well as at the other single
lytical treatment of the model in the independent cluster apholes separatings and C from other neighboring clusters.
proximation gives instead am-dependent power in the ex- Suppose that the length éftends to increase in time, while
ponent (-x***2). However, it can be shown that the the length ofB decreases, as shown in FigbR This evolu-
dynamics of large clusters is related to the problem of partion is equivalent to the diffusion of the vacancy betweéen
ticle diffusion in an infinite sea of mobile trag42-14, and B, which gets closer to the vacancy betwegrand C

IIl. MODELS AND SCALING THEORIES
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(diffusion of this vacancy was not shown only to simplify the

ter B have detached from it and aggregated to cluatérhis
is equivalent to displacement of ordeiof the diffusing va-

cancy betweer\ andB. Notice that in a configuration with °'11 /gft)&g

two neighboring empty sitefFig. 2(c)], the probability of

ijpOS't_'On(f_'Xed rateF=1) is much Iarg_er than the pro_bqbll- FIG. 3. Scaled cluster size as a function of scaled time for the
ity of diffusion of an aggregated particle<1); thus it is model with «=1 and aggregated particle diffusion rates0.001

highly_improbable that a diffusion process will fO”‘_)W the (squaresand 0.01(triangles. The solid curve is a parabolic fit of
formation of a double vacancy. Consequently, the time necte data fore=0.001.

essary for coarsening of two clusters of lengtlis of the
order of the time for a diffusing vacancy to move a distance
X, Which is At~ € x%. In the configuration after deposition
the average cluster length is increasedyysince it was

equivalent to the merging of clust8rinto clusterA. Conse-

quently, the average cluster length increases as

illustration). Finally, the length ofA will increase byx when e 2'6:_
A andB coalesce, as shown in Fig(@. At that time, a new :32,4 =
particle is deposited in an empty site of the double vacancy, Ot
which is also shown in Fig.(®). N2=2r
The deposition process occurred after all particles of clus- X JE

0

m» N N

—

For «<0, the above reasoning leadsRg,,~ 1 for large
'’ x and, consequentlg=1/2, as in theoriginal model.
For >0, Eq.(5) shows that the coarsening exponent can
be continuously tuned frore=0 to 0.5 by changing the clus-
ter breaking exponent.
dx  AX X € The same arguments can be used to predict the density of
at At e =7 (2)  double vacanciegi(t), a quantity which plays an important
€ X" X . . .
role in the analytic calculations of Sec. IV. The total rate at
Integrating Eq.(2), we obtainx~ €22, in agreement with  which deposition and cluster breaking occur after the forma-
the analytical results of the independent cluster approximation of a double vacancyFig. 2(c)] is of orderx?, for «
tion and simulation datgb]. >0. Consequently, that vacancy will survive during a time
Now consider the problem with the cluster breaking1/x®, while it takes a time of ordeAt~ € 'x? to be formed
mechanism. It is assumed that a cluster of lengthreaks [Figs. 2a)-2(c)]. Consequently, one double vacancy between
with rate two clusters of lengthx typically survives during a fraction
_ (1/x%)/(ex?) of the total time. To obtain its density we
Fop=kx* ©) must divide this quantity by the average cluster length
only when there is enough space available, i.e., when there ihich gives
more than one empty site at one of the sides of the cluster.

This process is illustrated in Fig(d), in which a cluster of poold) ~ ~—1 =~ S~ . (6)
lengthx=6 may break at five different internal points, which (e x)x X t

gives five possible final configurations if the breaking notice that this time decay does not involve the diffusive
occurs—three of them were shown in Figc)l factor et alone.

Following the argument of the original model, after the
diffusion processes leading to the onset of a double vacancy
[Fig. 2(c)], there are three possibilitie&) a new patrticle is IIl. SIMULATION RESULTS FOR AVERAGE LENGTHS
deposited with raté=1; (b) the cluster at the right side of AND DENSITIES
the double vacancy breakg) the cluster at the left side e simulated the model for cluster breaking exponents
breaks. Since the two neighboring clusters have lengths of=0 5 1, 2. and 4, withe=0.001 and, in some cases, also
order x, deposition will occur with probabilityPe,~1/X"  with €=0.01. Deposition rates, free particle diffusion rates,
for «>0 andx<1. Otherwise, one of the clusters adjacent togng amplitudes of cluster breaking rates werel, d=1, and
the double vacancy will break in two pieces. k=1, respectively, in all simulations. Lattices lengths were
If & new particle is deposited, then the average cluste[ =5x 1¢¢. The maximum simulation times were °lfor the
length will increase by, such as in model I. On the other smaller value ofw and 16 for the largest one. Thus, at all
hand, in the most probable case of an adjacent cluster breaimes, the whole lattice contained more than 500 clusters,
ing, the average cluster length will not increase. Conseyhich was essential to avoid finite-size effects. Indeed, sev-
quently, the average cluster length increases as eral results were compared with those in lattices of lengths
L=10* and confirmed the absence of significant finite-size

1 . e .
dx_ PdepA—X ~— _)1( > :%. (4)  effects. The number of different realizations varied from
dt At xTex® x 5000 for the smallerr to 500 for the largest one.
Integrating Eq(4), we obtain The scaling of the average cluster length on € andt is
confirmed in Fig. 3 fora=1, by showing(x)/(et)'® for €
iz =0.01 ande=0.001 as a function of 1£t)Y3. The data col-
X~ (et)s, z= . (5) ) .
2+a lapse confirms the expected scalingerthe convergence to
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FIG. 4. Scaled cluster size as a function of scaled time for the ¢ '
model with (8) «=0.5 ande=0.001; (b) =2 and e=0.001. The I_._
solid curves are parabolic fits of the data.
FIG. 6. (a) Example of particle-hole configuration on a line and

a finite value ag— o« confirms the scaling o, and the ;

variable in the abscissa suggests a constant correction term i map(dashed arrowsinto a column problem(b) The processes
of particle detachment from clusters, with rateand of free par-

ticle diffusion, with rate 1, in the corresponding column picture.

Eq. (4).
In Figs. 4a) and 4b) we show(x)/(et)* versus 1(et)*for , , >PON pict
Filled squares are the particles whose diffusion rates are indicated.

a=0.5 and 2, respectively, with the valueszdiven by Eq.
(4) and €e=0.001. These results confirm the validity of the

scaling theory of Sec. Il for the average cluster length.
Since double vacancies are very rare, the accuracy of thejjon of a double vacancy in the particle picture, which cor-

density is much lower than the accuracy @f. Conse- responds to the formation of a single vacancy in the cluster

quently, averages over relatively large time regions were negsjctyre.
essary to study the long time evolution of that density. The The deposition proceg§ig. 7) leads to a decrease of the

average values agree with the predicted scelifig (6)], 8 {141 number of clusters and of the number of holes between

shown in Fig. 5 fora=1 (with two values ofe). Notice that o o|ysters as time increases. On the other hand, the length
of the line in which particles are deposited and diffuse is kept

the different time and& dependences were confirmed there.
constant. Consequently, in order to adopt the column picture,

IV. THEORETICAL ANALYSIS UNDER THE
INDEPENDENT CLUSTER APPROXIMATION it is necessary to consider that the lendith of the corre-
. . sponding column problem decreases in time. These lengths

NOV\.’ we turn to the more po_vverful analy5|s starting from re related agy,=L—-M, whereM is the total mass or total
a version of the master equation, which can prowde a ful umber of particles, for periodic boundary conditions.
defscrlptllotr) oft;he process. .Th's IS lmore E?S"y set rl:_phby We denote byP,(m) the probability that a randomly cho-
L%I?Jrrrr?# gflﬂgigh?n?rrggfgzeuni;ng ilﬁgt::ngfr)sli(;éjr'?—i’}g] r\;ValpC asgan clystel(equivalently, columphas sizem at timet. It is
of the problem of particles in a line onto the cluster problemglven in terms of the cluster numbeiém, t) by
in a line of reduced length is shown in Figgaband @&b).

The original diffusion processes of free and aggregated par-
ticles correspond to those shown in Figb)6 Since one clus- (@ . 900,_00000__00000_00,_,
ter has two edges but corresponds to a single column, the DEPOSITION. CLUSTER BREAKUP
one-particle detachment rate in the column picture is ~000,_000000,_00000,_00..
~900_000_00_00000_00 _
v=2e. (7) :
Finally, in Fig. 7 we illustrate the competition between depo- ¢
sition of a new particle and cluster breaking after the forma- (b)
[ L -
;\ B b DEPOSITION
= [ ]
% 0.2~ - .:/stmamw{up
N ; B f
So0.15f . e ma
8 L 4 wew
S r . -
T PR PETTE
016006 0.1 0.16
(et)-1/3 FIG. 7. (a) Possible events after the formation of a double va-
cancy in the original particle picture: deposition of a new patrticle

FIG. 5. Scaled probability of double vacancies as a function of(gray circle and one of the possible events of cluster brealtef
scaled time for the model with=1 and aggregated particle diffu- cluste) are illustrated(b) The corresponding events in the column
sion ratess=0.001(squaresand 0.01(triangles. The solid curve is  picture. Notice that deposition of a new parti¢tgay squargleads
a parabolic fit of the data fog=0.001. to decrease of the lattice length in this picture.
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(8

while the length of the lattice in which the column problem
is defined varies due to deposition as

Lo(t+1) —Lo(t) _

L0 == P{0)[2-P(0)].

9)

PHYSICAL REVIEW E 71, 026110(2005

The generating function

Gy(s) = X P(m)s™

Here, P,(0) is the probability of an empty site in the column where the operatof is defined as

problem, which corresponds to double vacancies in the origi-

nal particle problen{see Figs. 6 and)7
Then the gain(loss from in (out) processes provides a

(16)
m=0
satisfies
Gui(9)[1-P(0)]*~G(s)=L(B+C+D+B), (17
£g= 2> g(ms™ (18)
m=0

master equation which must be written in terms of cluster

numbersN(m,t) in the general form

N(m,t+1) = N(m,t) =Lo(Bp+ C,+ D+ By), (10)

where B,, comes from the cluster breaking processgégs,
comes from the diffusion of aggregated particleietach-
ment of particles from clustexsD,, comes from the diffu-
sion of free particles, and,, comes from the deposition
processes. The terms in the right-hand side of ®Q) are

thus written in terms of probabilities of cluster masses at

time t.
In an independent interval approximation in which joint
probabilities are factorized, they are given by

Chn=7vy0(m+1-2P(m+1)+vyo(m-1)P(m-1)
X[1=P(0) - P(D)] - y6(m—2)P(m) — yP(m)
X[l - Pt(o) - Pt(l)]- (11)

Dm=dé(m—1)Py(m—- 1)Py(1) + déyoP(1) — ddy, 1P(1)
—dP(m)P(1) = dP(D)[8(m—- 1P (m—1) + 50

= 6m1— P(m)], (12)
By =P{(0)[20(m=2)P,(m- 1) — 26(m - 1) P,(m)
+ Em,lpt(o) - 25m,0]a (13)

and

©

B =20(m—1)P,(0)>, f(m+r)P(m+r) — 6(m- 2)f(m)
r=1

X Py(m)(m—1)P(0) = 81 oP(0) X (p— DF(P)P(p)
p=2

26(m=-1)>, f(m+r)P(m+r) - 6(m~-2)

r=1
) . (14

In Eqg. (14), the functionf(m) gives the rate for a cluster of

= Pt(o)(

X(m=Df(MP(M) - 5,02 (p— DF(P)P(P)
p=2

We thus obtain
cc= gu ~9[Gy(s) - P(0) - P(1)s] + (s— 1)ybGy(9), (19)

with

b=1-P(0) - P(1), (20)

LD =dP(1)(s- D[Gy(s) — 1], (21)

LB=P(0)}{2(s~ 1[G(s) = P(0)] +sP(0) -2}, (22

| |

- P(0) X s™(m - 1)f(m)P(m)
m=2

and

ST f(m+r)P(m+r)

r=0

LB=2P,(0) >,

m=1

-P(0) X (p- DF(p)Pp). (23
m=2

Equations(19), (21), and(22) are the same obtained in Ref.
[6] for the model with only deposition and diffusidmvith
d=1).

Now defining the operataf so that

f<s(9is)2 emym) =X (meym),  (24)

we may write the contribution of cluster breaking processes
to the generating function as

_pL*s 9 sl
LB= Pt(O)(1 —S)HF(S&S)Gt(S)]Fl }‘(sas>Gt(s)}

- P«@H J

oot
RS o s \Ss (S
(25

Because deposition slowly fills the system, we expect the

massm to break at each internal point, i.e., at each internafonfigurations to coarsen and presumably to go into some

connection between two aggregated particles:

f(m) = kM

=k(m-1)*1.
— (m-1)

(15

scaling asymptotics where mass scales with some power of
andP,(m) andG(s) each become one-variable scaling func-
tions. So we look for a long time scaling solution of the
above equation, in which the finite differenc8,(s)

026110-5
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-Gy(s) in Eq. (17) can be taken as a time derivative. The of zero masgholes in the column pictujedecays as
scaling variable will be some combination bflarge and 1

u=1-s (small, the latter because large cluster sizes arise P,(0) ~ i (31)
from structure inG,(s) at s=1. The variableu is actually t

conjugate tan. Coarsening will correspond to the scalenof  the second term at the LHS and the second term at the right

ast?, with some powek, in which case the one-variable form panq sidgRHS) of Eq. (30) are both of order 1tF. The first

will be term in the RHS, related to the diffusion of aggregated par-

G(9) = UF(uD), (26) ticles, _i§ of order 11722.'Since cluster breakipg competes yvith

deposition and recalling that the coarsening exponent in the

with some functionF. Normalization requirese=0 and  problem with only deposition and diffusion &=1/2, we

F(0)=1. In the scaling limit, the relationship of the generat- expect that, in the present systezss 1/2 for anya. The last

ing function to the probability?;(m) requires the latter to be term in the RHS, associated with cluster breaking, is of order

of the form 1/t#=20 which clearly dominates over the terms which scale

as 14t# for any «>0. Thus, we conclude that the terms as-
T)y (27) sociated with aggregated particle diffusifdirst of the RHS
t? of Eg. (30)] and with cluster breakingast of the RH$ are
dominant fora>0 and must cancel each other, while the
remaining terms are subdominant contributions which must

F(x) = fo g(y)e™dy. (28)  also cancel. From the dominant terms, we obtain

Moreover, fors=1 one hass(d/ds) = dldu in Eq. (25). 22=p~za (32
Thus we obtain the following equation for the one- and from the subdominant terms we obtain
variable scaling function: B=1, (33)
[(1 —t—lzg(O))z<l . %) ) 1} Eu®) which gives the coarsening exponent
z=1/(2+a). (39

:U{F(Utz)[a‘ YL -u+u?+ )] The value ofz agrees with that obtained from scaling
arguments and in simulations. In order to compare the den-
1 1/1 1 5 1 0 sity of single vacancies in the column probleRy0), and
*(y=- )tzg )t AL-u+u'+ '”)tzg( ) the density of double vacancies in the original particle prob-
lem, poo(t), we consider that the total length of the lattice in
+ }Zg(O)(ZuF(utZ) -1 —u)%g(O) + %g(O) _ 2) the column probleml,, is smaller than the Iength by a
t t t factor of the order of the average cluster sigee Figs. 6 and
. 1 ol - (2 +u) }"(i>F(utz) 7), which scales a#. Consequently
9 u o poolt) ~ PO/ ~ 7142, (35)

d 9 which also agrees with the scaling arguments of Sec. Il and
- | —F — |F@ut)
au” \au =0

1
Py(m) = t_Zg<
with

simulation results. The and y dependences of average clus-
ter size and densities of vacancies in both pictures, predicted
9 _2ru) g  inSecs. Il and Ill, also follow from EQ(30).
Ju u (ut), (29) Also notice that, fora<0, the cluster breaking term of
Eq. (30) is not dominant anymore and we obtainl/2, as

wherea=y—yP(0)+(1-7)P(1). in the problem without that mechanis(Ref. [6]).
The dominant terms in Eq29) give

1
- t—zg(0)<

V. DISTRIBUTIONS OF CLUSTER LENGTHS

?(F,(X)_ZP’[(O)F(X) An equation for the one-variable scaling functi®itx)
follows from the balance of the dominant terms in E8Q),
related to diffusion of aggregated particles and cluster
breaking:

2 2 d
- Y(tz) F(x) — 2P,(0) + Pt(O)tz{_ Q[f (tzd_x>F(X)L

d Zd »yXZF(X) _ . g (_ Zi) :|
_{&f(t d_x)F(X)]X:O} 2 —Pt(o)t{x{f - JF) 3

2 d d [ d ( ,d ) } }
712 = 72— _ +| —F| -t — |F(X)
+ PO (x dx)}—<t dx)F(X) (30 dx dx x=0
In the scaling limit, the f_irst term at the [eft—hand side + Pt(O)tZ(E _ g)f(—tZE>F(x). (36)
(LHS) is of order 1t. Assuming that the density of clusters dx X dx

026110-6
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Physically, it means that the dynamics in the long time re- T, N —_ 0 ————
gime is dominated by diffusion of aggregated particles, i 2! 1 E [ ]
which forms larger clusters at the expense of neighboring Ez - ] ?_4 '_\ ]
ones, and cluster breaking, which restores a relatively ran- & - - — g el “‘%w ]
dom size distribution after the onset of a vacancy in the T s ] E el 1
column_plcture (double vacancy in the particle plctl)_re B 10 e B0 o200 200
Deposition becomes a rare process, as expected with the y2 y3
large probabilities of cluster breaking far>0, and does not
contribute to determine the main features of the scaling func- (a) (b)
tion.

Instead of solving Eq(36) for the functionF(x), which FIG. 8. Scaled probability of a cluster of simeas a function of

would involve fractional derivatives for noninteger expo- the scaled mass gccording to the prediction of the independent in-
nentsa, we consider the same balance of contributions of€va! apprOX|m$1t|or[Eqs.(40) and (41)], for (@) a=2, €=0.001,
diffusion of aggregated particles and cluster breaking in thé=1/4:1=4x10" (b) a=4, €=0.001,2=1/6,t=5x 10"

original master equationd 0), (11), and (14). They can be

rewritten in terms of the functiog(y) defined in Eq(27). At (41), it is expected that [fet)”P,(m)/y*] decreases linearly

this point, we must consider th&(0) scales as with y”, with
(ko/K) = m/(et)* (42
PO~ =~ (37) y
(u=1/2 andv=2 for =2, u=0 andv=3 for a«=4). Here a
wherek,~0(1), since the survival time of those vacancies isfactor € * multiplies the variable in Eq(27).
inversely proportional to the amplitudeof the rate of clus- However, the curved shapes of the plots in Figs) 8nd
ter breaking Eq. (3)]. We are thus led to 8(b) disagree with the predictions of this independent cluster
Pay)  (kgk) . approximation. On the other hand, it was observed that the
y a7 9ly At2(a-1) f 1ot (@D (vl e data for all values ofr can be fitted by a universal distribu-
—_— + — a—
% dy? ek 2 y dy'y™ely’) ~y*ey) tion of the form
* = (et)?P(m) ~ exp(—- y*?). 43
- dy,y,m_l)g(y,)} o a9 g(y) = (ePy(m) ~ expl~y*? (43
0 This is illustrated in Figs. @ and 9b) for «=0.5 anda
Fory>0, Eq.(38) leads to =1, respectively, in which the deviations from E¢$0) and
’ o (41) are relatively smallindeed, fora=1, the exponent 3/2
ng”"=yg +(2+a)y* g, (39 of the universal distribution is also predicted by E41)],
ith s = E hi : in the distributi and in Figs. 1g) and 1Q@b) for =2 and 4, respectively.
mltthenfo%ko fom this equation we obtain the distribution Least squares fits of the data for the largest len¢tlashed

lines shifted two units to the right in Figs. 9 and) d®nfirm
aly) ~ y“exp(- Ay"), (40)  the validity of this universal scaling.
In order to explain this unexpected result, we must pay
attention to the details of the dynamical process during the
v=1+al2, p=1-al4, A~y*? (41)  coarsening process, which comes from a balance between

which suggests that the shapes of the distributions of Clustearggregated particle diffusion and cluster breaking, and its

lenaths also depend on the cluster breaking exponents connection to diffusion-reaction related problems. Turning
9 P g exp ".. _back to the original particle picture of the problem, during

The results from the independent interval approximation Imost all the time, the dynamics is equivalent to diffusion of
share some aspects with those obtianed from rate equatioﬁs ’ y q

of coagulation and fragmentation in Reff$7,18. For a con- vacancies and scatt_ering O.f one vacancy upon collision of
. . ! fwo or more vacancies. This scattering of a vacancy corre-

stant fragmentation kernel, they obtain an equation for
cluster-size distribution function which is the same as Eq.
(39 with @=1, and consequently a decay as E4f), but
other distributions are obtained for different kernels.

This prediction can be compared with simulation results. el
In all cases, the distributions were obtained by taking the sl
length of each cluster only once while spanning the lattice at _10 [
a fixed simulation time. Thus our estimates can be directly
compared with the predictions from the column picture. On
the other hand, if a site average had been done during the
simulations, a rescaling of the predictions of the column pic-
ture would be necessary. FIG. 9. Scaled probability of a cluster of sizeas a function of

In Figs. 8a) and &b) we show the scaled cluster length the scaled masg¥’? for (a) «=0.5,€=0.001,z=0.4,t=4 % 10%; (b)
distributions fora=2 and 4, respectively. From Eq40) and  a=1, €e=0.001,z=1/3,t=4x 1(".

with

°
-2
-4 .

| R R )
® ® s DO

In[(et)*P,(m)]
In[(et)*P,(m)]

|
—
(=]
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= Or = O A
E -2 E -2 [\ ] P(x) ~ exp[— —=pr 32 = 3prx | ~ expl - C(x(x))¥],
a’ _,[ a’ _,[ N 1 >
] _4 ] _4 I~ \} =
T -of el %] (46)
[} L et L O&u
E 8 R T
0 10 20 . )
yo/2 where we considered that~ 1/(x) andC is a constant.
b) The above result agrees with those from simulation for all
values of the parameter. In its derivation, a time average

was performed, which corresponds to a time average in the
cluster breaking problem within a large time range for single
vacancy diffusion, but small for deposition of new particles
and coarsening. Indeed, this is a suitable interpretation for
the fixed-time results of Figs. 8-10, which were obtained
sponds to the breakup of a cluster at a random internal poiftom several snapshots of the system near the tingggen
(see Figs. 2 and)7Thus, while diffusion of a vacancy is the gpgve the plots.
mechanism that leads to the formation of large clusters lo- The discrepancy with the prediction of the theoretical
Ca”y, the CO||iSi0n Of VacanCieS restores random distributiorhnedysis based on the independent interva| approximation is
of cluster lengths around the average value. related to the particular form of the distribution of surviving
~Focusing on a specific diffusing vacancy, it may beparticles displacements in the TP. The former approximation
viewed as a particle in an infinite sea of trdd®-14, the  goes not capture the correlated nature of the rare processes.
latter represented by the other vacancies. Subsequent colli- Finally, we observe that the data for several values of
;ions apprgximately correspond to the random walk startingrigs. 9 and 10, although lying approximately in the same
in the origin and the absorption by a trap after a certairyegion, do not collapse into a single curve, which indicates

time—however, contrary to the trapping process, the vacancihe presence of corrections to the scaling in &@® which
is thrown away and not absorbed. Thus the probability of &jo depend on.

cluster of lengthx in our model can be approximated by the
probability of finding a particle at distancefrom the origin

in the trapping problentTP) with an infinite sea of mobile
traps.

In Refs.[13] and[14], the TP was studied analytically and
it was shown that the probability of the particle surviving at
time t, being always located in the interviatl/2,1/2], and
that no trap has entered this region up to tims given by

FIG. 10. Scaled probability of a cluster of sigeas a function
of the scaled masg®?, for (a) «=2, €=0.001,z=1/4,t=4Xx 10",
(b) @=4, €=0.001,z=1/6,t=5x 1C%.

VI. SUMMARY AND CONCLUSION

We studied one-dimensional exclusion models with par-
ticle diffusion, reversible attachment to clusters, and deposi-
tion mechanisms at large vacancies competing with breakup
of neighboring clusters. These models aim at representing

Prp(t) ~ exd— Aprett’? = (prl + Npet/1?)]. (44)  coarsening of aggregates subject to internal stress, so that the

) ) , increase of density when there is free space available is re-

In Eq. (44), pr is the density of traptof order of the inverse  gyicteq by breakup that leads to internal relief.
average cluster lengthx) |_n our pr_oblen), Ay andA; are_ Different dependencies of the cluster breaking rate on the
constants of order of a unit, and it is assumed that the diffug)yster length were considered, involving the cluster break-
sion cogfﬁuents of the part|.cles and the traps are both equrﬂl‘g exponent. Simulation results show cluster size growth
to e. This result was used in Reﬁl3] to estimate a lower as X""tl/(2+a), which was exp|ained using heuristic Sca”ng
bound for the probability of survival of a particle at time  arguments. The analytical treatment of the master equation
and it was shown to converge to the upper bound they alsg;ith an independent cluster approximation for joint probabil-
estimated, thus providing an exact limit for that probability ity gistributions supports this prediction, as well as the scal-

at long times. o ing of the density of double vacancies obtained numerically.
For a given timet, that distribution is peaked arourid Despite the dependence of the coarsening exponent on the
=Iy, where exponenta, universal probability distributions of large clus-
Npet |13 ters were obtained, in the forf(x) ~ exp(-x*?). This result
v = o] (45 shows limitations of the independent interval approximation

for the treatment of rare evenfsluster lengths much larger
Instead of the broad displacement distribution of a free parthan the average valuavhich emerge from the diffusion of
ticle problem, the surviving particles at timare much more vacancies and their survival at long times without being scat-
probably located around the distankg from the origin.  tered by collision with other vacancies, which corresponds to
Thus, the probability of finding a surviving particle, which cluster breaking and restores a random distribution of cluster
decays in time, may be expressed in terms of this most prodengths. However, the connection of the problem with the
able distancé,, from the origin. In our problem of a diffus- problem of a particle diffusing in an infinite sea of mobile
ing vacancy, it corresponds to finding a cluster of length particles provides an explanation for that distribution, which
~ 1y at that time after the last collision with another vacancy.may be viewed as snapshots of the system at time intervals
This gives a distribution for cluster lengths during which the coarsening process was negligible.
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