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Anomalous coarsening in far-from-equilibrium one-dimensional systems is investigated by applying simu-
lation and analytic techniques to minimal hard-core particlesexclusiond models. They contain mechanisms of
aggregated particle diffusion, with ratese!1, particle deposition into cluster gaps, but suppressed for the
smallest gaps, and breakup of clusters that are adjacent to large gaps. Cluster breakup rates vary with the
cluster lengthx askxa. The domain growth lawkxl,setdz, with z=1/s2+ad for a.0, is explained by a simple
scaling picture involving the time for two particles to coalesce and a new particle to be deposited. The density
of double vacancies, at which deposition and cluster breakup are allowed, scales as 1/ftsetdzg. Numerical
simulations for several values ofa ande confirm these results. A fuller approach is presented which employs
a mapping of cluster configurations to a column picture and an approximate factorization of the cluster
configuration probability within the resulting master equation. The equation for a one-variable scaling function
explains the above average cluster length scaling. The probability distributions of cluster lengthsx scale as
Psxd=f1/setdzggsyd, with y;x/ setdz, which is confirmed by simulation. However, those distributions show a
universal tail with the formgsyd,exps−y3/2d, which is explained by the connection of the vacancy dynamics
with the problem of particle trapping in an infinite sea of traps. The high correlation of surviving particle
displacement in the latter problem explains the failure of the independent cluster approximation to represent
those rare events.
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I. INTRODUCTION

Domain growth in far-from-equilibrium systems is a sub-
ject of increasing interest due to the large number of appli-
cations, such as phase separation of mixtures, dynamics of
glasses, and island coarsening after thin film deposition
f1–3g. In these systems, their dynamics is responsible for
bringing them to steady states, while external agents act to
drive them out of equilibrium. Many statistical models ex-
hibit simple, universal domain growth laws, which are found
in some real systems, but there is much interest in models
with slow coarsening and with continuously varying growth
exponents, for instance, due to their potential applications to
glassy systemsf2–4g.

In this paper, we will consider one-dimensional models
with particle deposition and diffusion, reversible aggregation
to clusters, and mechanisms of cluster breaking, which show
such a variety of domain growth laws. Cluster breaking may
be an effect of internal stress and was previously considered
in studies of island growth in submonolayersf5g. In a real
system subject to external pressure but with some type of
geometrical frustration other than those observed in island
growth, it is expected that cluster breaking will compete with
mechanisms of densification, these ones to be represented by
vacancy filling sdeposition of new particlesd. However, the
onset of those processes depends on the formation of large
vacancies due to thesslowd diffusion of aggregated particles.
The coarsening exponents of those systems will be shown to

vary with the exponents in the scaling of the cluster break
probabilities, although the cluster length distributions are
universal. Consequently, these one-dimensional statistical
models, although not related to a specific real problem, re-
veal some interesting features that may help to understand
complex three-dimensional systems, with the advantage of
being more tractable both analytically and numerically.

The models presented here are nontrivial extensions of
those analyzed in a recent paperf6g, which include particle
diffusion, reversible aggregation to clusters, and deposition
mechanisms. In the original model, hard-core particles in a
one-dimensional lattice have diffusion ratesr =d when they
were freesi.e., they have two empty nearest-neighbor sitesd
and e=e,e−E/T when they have one occupied nearest-
neighbor site, withe!d fFig. 1sadg. The deposition rate is
F=1, in units of monolayers per time step, and is restricted
to sites with at least one empty nearest neighborfFig. 1sbdg,
i.e., a site of a double or larger vacancy. These dynamical
rules were motivated by the Clarke-Vvedensky model and
related models of thin films or submonolayer growthf7g, but
included effects of geometrical frustration that forbid filling
of single vacancies. Domain growth in the formkdl
,e−1/2t1/2 was predicted analytically and from simulation
f6g. The same model without deposition and in the limite
!1 showed domain growth ast1/3 before approaching a
steady statef6g.

Here, in addition to the processes of the original model
fFigs. 1sad and 1sbdg, we will consider the competition be-
tween deposition of new particles and the breaking of a
neighboring cluster when a doublesor largerd vacancy ap-
pears. In this model, a cluster of lengthx with two vacancies
at one of its sidesswhere deposition may also occurd may
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break in two pieces, at a random internal position, with rate
kxa, where the exponenta is a tunable parameter andk is a
constant amplitude. The process is illustrated in Fig. 1scd for
a cluster withx=6, with a total of five internal points for
its separation into two pieces. Our focus is the nontrivial
casea.0, for whicha-dependent coarsening exponents are
obtained.

Notice that this model is significantly different from other
models which involve coagulation or breakup of clusters
with size-dependent rates with variable exponentsf8–11g.
Here, the clusters slowly gain mass bysnonbiasedd diffusion
at the expense of neighboring clusters, while breakup is sub-
ject to the availability of free space for its expansion.

Scaling laws for the average cluster lengthkxl in the form

kxl , tz s1d

will be obtained, wherez is called the coarsening exponent.
In the models with the cluster breaking mechanism, the ex-
ponentz can be continuously tuned from 0 to 1/2 by varying
the scaling exponenta of the rate of cluster breaking. This
result is predicted by a scaling theory that also described the
cluster growth laws of Ref.f6g and is confirmed by numeri-
cal simulations with very good accuracy. It is also possible to
describe such systems in terms of interval probabilities,
which allows an analytic investigation based on an indepen-
dent cluster approximation. Using this method, we also pre-
dict the coarsening exponents of the model.

There is also much interest in knowing the distributions of
cluster lengths in such anomalously growing systems. Those
distributions are also calculated numerically and show a uni-
versal sa-independentd form Psxd,exps−x3/2d, despite the
fact that the coarsening exponents do depend ona. The ana-
lytical treatment of the model in the independent cluster ap-
proximation gives instead ana-dependent power in the ex-
ponent s−x1+a/2d. However, it can be shown that the
dynamics of large clusters is related to the problem of par-
ticle diffusion in an infinite sea of mobile trapsf12–14g,

where the holes between clusters in the former problem cor-
respond to the particles in the latter. This connection leads to
the above universal cluster length distribution and explains
the failure of the independent cluster approximation to pre-
dict those distributions.

This paper is organized as follows. In Sec. II we present
the scaling theory and obtain the coarsening exponents. In
Sec. III we present the results of simulations for the time
dependence of average cluster lengths and density of double
vacancies. In Sec. IV, we map the cluster configurations to a
column picture and determine the master equation with the
independent interval approximation to the joint cluster length
probability. In Sec. V, we discuss the cluster length probabili-
ties, comparing numerical results, the analytical prediction of
the independent interval approximation, and the connection
to the problem of one diffusing particle in a sea of moving
traps. In Sec. VI, we summarize our results and present our
conclusions.

II. MODELS AND SCALING THEORIES

Here we will define our models and estimate coarsening
exponents using scaling arguments along the lines of Ref.
f6g, which were previously adopted in the analysis of related
systems by Evansf3g and introduced in the analysis of do-
main growth in magnetic systems by Laiet al. f15g and
Shoreet al. f16g.

First we consider the original model of deposition and
diffusion presented in Ref.f6g fFigs. 1sad and 1sbdg.

For simplicity, we will refer to the average cluster length
as x. In Fig. 2sad, we show a configuration with clusters of
lengths typically of orderx, namedA,B, andC, with single
empty sitesssingle vacanciesd between them. Deposition is
not allowed at those vacancies, as well as at the other single
holes separatingA and C from other neighboring clusters.
Suppose that the length ofA tends to increase in time, while
the length ofB decreases, as shown in Fig. 2sbd. This evolu-
tion is equivalent to the diffusion of the vacancy betweenA
and B, which gets closer to the vacancy betweenB and C

FIG. 1. sad Diffusion processes of free and aggregated particles
at the borders of clusters, with the respective diffusion rates.sbd
Allowed deposition processes at vacancies with a neighboring va-
cant site, with the respective rate, and the forbidden deposition pro-
cess, in which the vacancy has two occupied neighbors.scd Three of
the possible five configurations after the breakup of the cluster at
the left side of the double vacancy, with the respective total rate.
The breaking positions are indicated by a dashed line.

FIG. 2. sad Three typical neighboring clusters, with lengths of
the order of the average cluster sizex. sbd Growth of clusterA at the
expense of clusterB, which is equivalent to the diffusion of the
vacancy between them. For simplicity, the effective diffusion of the
vacancy between clustersB andC was not illustrated.scd Possible
deposition after collision of the two vacancies, extinction of cluster
B, and coarsening of clusterA.
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sdiffusion of this vacancy was not shown only to simplify the
illustrationd. Finally, the length ofA will increase byx when
A andB coalesce, as shown in Fig. 2scd. At that time, a new
particle is deposited in an empty site of the double vacancy,
which is also shown in Fig. 2scd.

The deposition process occurred after all particles of clus-
ter B have detached from it and aggregated to clusterA. This
is equivalent to displacement of orderx of the diffusing va-
cancy betweenA andB. Notice that in a configuration with
two neighboring empty sitesfFig. 2scdg, the probability of
depositionsfixed rateF=1d is much larger than the probabil-
ity of diffusion of an aggregated particlese!1d; thus it is
highly improbable that a diffusion process will follow the
formation of a double vacancy. Consequently, the time nec-
essary for coarsening of two clusters of lengthx is of the
order of the time for a diffusing vacancy to move a distance
x, which is Dt,e−1x2. In the configuration after deposition,
the average cluster length is increased byx, since it was
equivalent to the merging of clusterB into clusterA. Conse-
quently, the average cluster length increases as

dx

dt
,

Dx

Dt
,

x

e−1x2 =
e

x
. s2d

Integrating Eq.s2d, we obtainx,e1/2t1/2, in agreement with
the analytical results of the independent cluster approxima-
tion and simulation dataf6g.

Now consider the problem with the cluster breaking
mechanism. It is assumed that a cluster of lengthx breaks
with rate

rcb = kxa s3d

only when there is enough space available, i.e., when there is
more than one empty site at one of the sides of the cluster.
This process is illustrated in Fig. 1scd, in which a cluster of
lengthx=6 may break at five different internal points, which
gives five possible final configurations if the breaking
occurs—three of them were shown in Fig. 1scd.

Following the argument of the original model, after the
diffusion processes leading to the onset of a double vacancy
fFig. 2scdg, there are three possibilities:sad a new particle is
deposited with rateF=1; sbd the cluster at the right side of
the double vacancy breaks;scd the cluster at the left side
breaks. Since the two neighboring clusters have lengths of
order x, deposition will occur with probabilityPdep,1/xa

for a.0 andx!1. Otherwise, one of the clusters adjacent to
the double vacancy will break in two pieces.

If a new particle is deposited, then the average cluster
length will increase byx, such as in model I. On the other
hand, in the most probable case of an adjacent cluster break-
ing, the average cluster length will not increase. Conse-
quently, the average cluster length increases as

dx

dt
, Pdep

Dx

Dt
,

1

xa

x

e−1x2 =
e

x1+a . s4d

Integrating Eq.s4d, we obtain

x , setdz, z=
1

2 + a
. s5d

For a,0, the above reasoning leads toPdep<1 for large
x and, consequently,z=1/2, as in theoriginal model.

For a.0, Eq.s5d shows that the coarsening exponent can
be continuously tuned fromz=0 to 0.5 by changing the clus-
ter breaking exponent.

The same arguments can be used to predict the density of
double vacancies,r00std, a quantity which plays an important
role in the analytic calculations of Sec. IV. The total rate at
which deposition and cluster breaking occur after the forma-
tion of a double vacancyfFig. 2scdg is of order xa, for a
.0. Consequently, that vacancy will survive during a time
1/xa, while it takes a time of orderDt,e−1x2 to be formed
fFigs. 2sad–2scdg. Consequently, one double vacancy between
two clusters of lengthx typically survives during a fraction
s1/xad / se−1x2d of the total time. To obtain its density we
must divide this quantity by the average cluster lengthx,
which gives

r00std ,
s1/xad
se−1x2d

1

x
,

e

x3+a ,
setd−z

t
. s6d

Notice that this time decay does not involve the diffusive
factor et alone.

III. SIMULATION RESULTS FOR AVERAGE LENGTHS
AND DENSITIES

We simulated the model for cluster breaking exponents
a=0.5, 1, 2, and 4, withe=0.001 and, in some cases, also
with e=0.01. Deposition rates, free particle diffusion rates,
and amplitudes of cluster breaking rates wereF=1, d=1, and
k=1, respectively, in all simulations. Lattices lengths were
L=53104. The maximum simulation times were 106 for the
smaller value ofa and 108 for the largest one. Thus, at all
times, the whole lattice contained more than 500 clusters,
which was essential to avoid finite-size effects. Indeed, sev-
eral results were compared with those in lattices of lengths
L=104 and confirmed the absence of significant finite-size
effects. The number of different realizations varied from
5000 for the smallera to 500 for the largest one.

The scaling of the average cluster lengthkxl on e andt is
confirmed in Fig. 3 fora=1, by showingkxl / setd1/3 for e
=0.01 ande=0.001 as a function of 1/setd1/3. The data col-
lapse confirms the expected scaling one, the convergence to

FIG. 3. Scaled cluster size as a function of scaled time for the
model with a=1 and aggregated particle diffusion ratese=0.001
ssquaresd and 0.01strianglesd. The solid curve is a parabolic fit of
the data fore=0.001.
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a finite value ast→` confirms the scaling ont, and the
variable in the abscissa suggests a constant correction term to
Eq. s4d.

In Figs. 4sad and 4sbd we showkxl / setdz versus 1/setdz for
a=0.5 and 2, respectively, with the values ofz given by Eq.
s4d and e=0.001. These results confirm the validity of the
scaling theory of Sec. II for the average cluster length.

Since double vacancies are very rare, the accuracy of their
density is much lower than the accuracy ofkxl. Conse-
quently, averages over relatively large time regions were nec-
essary to study the long time evolution of that density. The
average values agree with the predicted scalingfEq. s6dg, as
shown in Fig. 5 fora=1 swith two values ofed. Notice that
the different time ande dependences were confirmed there.

IV. THEORETICAL ANALYSIS UNDER THE
INDEPENDENT CLUSTER APPROXIMATION

Now we turn to the more powerful analysis starting from
a version of the master equation, which can provide a full
description of the process. This is more easily set up by
reformulating the process using a column picture, in which a
column of heightm represents a cluster of sizem. The map
of the problem of particles in a line onto the cluster problem
in a line of reduced length is shown in Figs. 6sad and 6sbd.
The original diffusion processes of free and aggregated par-
ticles correspond to those shown in Fig. 6sbd. Since one clus-
ter has two edges but corresponds to a single column, the
one-particle detachment rate in the column picture is

g = 2e. s7d

Finally, in Fig. 7 we illustrate the competition between depo-
sition of a new particle and cluster breaking after the forma-

tion of a double vacancy in the particle picture, which cor-
responds to the formation of a single vacancy in the cluster
picture.

The deposition processsFig. 7d leads to a decrease of the
total number of clusters and of the number of holes between
the clusters as time increases. On the other hand, the lengthL
of the line in which particles are deposited and diffuse is kept
constant. Consequently, in order to adopt the column picture,
it is necessary to consider that the lengthL0 of the corre-
sponding column problem decreases in time. These lengths
are related asL0=L−M, whereM is the total mass or total
number of particles, for periodic boundary conditions.

We denote byPtsmd the probability that a randomly cho-
sen clustersequivalently, columnd has sizem at time t. It is
given in terms of the cluster numbersNsm,td by

FIG. 4. Scaled cluster size as a function of scaled time for the
model with sad a=0.5 ande=0.001; sbd a=2 ande=0.001. The
solid curves are parabolic fits of the data.

FIG. 5. Scaled probability of double vacancies as a function of
scaled time for the model witha=1 and aggregated particle diffu-
sion ratese=0.001ssquaresd and 0.01strianglesd. The solid curve is
a parabolic fit of the data fore=0.001.

FIG. 6. sad Example of particle-hole configuration on a line and
the mapsdashed arrowsd into a column problem.sbd The processes
of particle detachment from clusters, with rateg, and of free par-
ticle diffusion, with rate 1, in the corresponding column picture.
Filled squares are the particles whose diffusion rates are indicated.

FIG. 7. sad Possible events after the formation of a double va-
cancy in the original particle picture: deposition of a new particle
sgray circled and one of the possible events of cluster breakupsleft
clusterd are illustrated.sbd The corresponding events in the column
picture. Notice that deposition of a new particlesgray squared leads
to decrease of the lattice length in this picture.
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Ptsmd =
Nsm,td
L0std

, s8d

while the length of the lattice in which the column problem
is defined varies due to deposition as

L0st + 1d − L0std
L0std

= − Pts0df2 − Pts0dg. s9d

Here,Pts0d is the probability of an empty site in the column
problem, which corresponds to double vacancies in the origi-
nal particle problemssee Figs. 6 and 7d.

Then the gainslossd from in soutd processes provides a
master equation which must be written in terms of cluster
numbersNsm,td in the general form

Nsm,t + 1d − Nsm,td = L0sBm + Cm + Dm + Bmd, s10d

where Bm comes from the cluster breaking processes,Cm
comes from the diffusion of aggregated particlessdetach-
ment of particles from clustersd, Dm comes from the diffu-
sion of free particles, andBm comes from the deposition
processes. The terms in the right-hand side of Eq.s10d are
thus written in terms of probabilities of cluster masses at
time t.

In an independent interval approximation in which joint
probabilities are factorized, they are given by

Cm = gusm+ 1 − 2dPtsm+ 1d + gusm− 1dPtsm− 1d

3f1 − Pts0d − Pts1dg − gusm− 2dPtsmd − gPtsmd

3f1 − Pts0d − Pts1dg, s11d

Dm = dusm− 1dPtsm− 1dPts1d + ddm,0Pts1d − ddm,1Pts1d

− dPtsmdPts1d = dPts1dfusm− 1dPtsm− 1d + dm,0

− dm,1 − Ptsmdg, s12d

Bm = Pts0df2usm− 2dPtsm− 1d − 2usm− 1dPtsmd

+ dm,1Pts0d − 2dm,0g, s13d

and

Bm = 2usm− 1dPts0do
r=1

`

fsm+ rdPtsm+ rd − usm− 2dfsmd

3Ptsmdsm− 1dPts0d − dm,0Pts0do
p=2

`

sp − 1dfspdPtspd

= Pts0dS2usm− 1do
r=1

`

fsm+ rdPtsm+ rd − usm− 2d

3sm− 1dfsmdPtsmd − dm,0o
p=2

`

sp − 1dfspdPtspdD . s14d

In Eq. s14d, the functionfsmd gives the rate for a cluster of
massm to break at each internal point, i.e., at each internal
connection between two aggregated particles:

fsmd = k
sm− 1da

m− 1
= ksm− 1da−1. s15d

The generating function

Gtssd ; o
m=0

`

Ptsmdsm s16d

satisfies

Gt+1ssdf1 − Pts0dg2 − Gtssd = LsB + C + D + Bd, s17d

where the operatorL is defined as

Lg = o
m=0

`

gsmdsm. s18d

We thus obtain

LC =
g

s
s1 − sdfGtssd − Pts0d − Pts1dsg + ss− 1dgbGtssd, s19d

with

b ; 1 − Pts0d − Pts1d, s20d

LD = dPts1dss− 1dfGtssd − 1g, s21d

LB = Pts0dh2ss− 1dfGtssd − Pts0dg + sPts0d − 2j, s22d

and

LB = 2Pts0do
m=1

` Fsmo
r=0

`

fsm+ rdPtsm+ rdG
− Pts0do

m=2

`

smsm− 1dfsmdPtsmd

− Pts0do
m=2

`

sp − 1dfspdPtspd. s23d

Equationss19d, s21d, ands22d are the same obtained in Ref.
f6g for the model with only deposition and diffusionswith
d=1d.

Now defining the operatorF so that

FSs
]

] s
Do

m

esmgsmd = o
m

fsmdesmgsmd, s24d

we may write the contribution of cluster breaking processes
to the generating function as

LB = Pts0d
s1 + sd
s1 − sdHFFSs

]

] s
DGtssdG

s=1
− FSs

]

] s
DGtssdJ

− Pts0dHFs
]

] s
FSs

]

] s
DGtssdG

s=1
+ s

]

] s
FSs

]

] s
DGtssdJ .

s25d

Because deposition slowly fills the system, we expect the
configurations to coarsen and presumably to go into some
scaling asymptotics where mass scales with some power oft,
andPtsmd andGtssd each become one-variable scaling func-
tions. So we look for a long time scaling solution of the
above equation, in which the finite differenceGt+1ssd
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−Gtssd in Eq. s17d can be taken as a time derivative. The
scaling variable will be some combination oft slarged and
u;1−s ssmalld, the latter because large cluster sizes arise
from structure inGtssd at s<1. The variableu is actually
conjugate tom. Coarsening will correspond to the scale ofm
astz, with some powerz, in which case the one-variable form
will be

Gtssd = uaFsutzd, s26d

with some functionF. Normalization requiresa=0 and
Fs0d=1. In the scaling limit, the relationship of the generat-
ing function to the probabilityPtsmd requires the latter to be
of the form

Ptsmd =
1

tz
gSm

tz
D , s27d

with

Fsxd =E
0

`

gsyde−xydy. s28d

Moreover, fors<1 one hasss] /]sd<] /]u in Eq. s25d.
Thus we obtain the following equation for the one-

variable scaling function:

FS1 −
1

tz
gs0dD2S1 +

]

] t
D − 1GFsutzd

= uFFsutzdfa − gs1 − u + u2 + ¯ dg

+ sg − 1d
1

tz
gS 1

tz
D + gs1 − u + u2 + ¯ d

1

tz
gs0dG

+
1

tz
gs0dS2uFsutzd − s1 − ud

1

tz
gs0d +

2

tz
gs0d − 2D

+
1

tz
gs0dH−

s2 + ud
u

FFS ]

] u
DFsutzdG

u=0

− F ]

] u
FS ]

] u
DFsutzdG

u=0
J

−
1

tz
gs0dS ]

] u
−

s2 + ud
u

DFsutzd, s29d

wherea;g−gPts0d+s1−gdPts1d.
The dominant terms in Eq.s29d give

zx

t
F8sxd − 2Pts0dFsxd

= gS x

tz
D2

Fsxd − 2Pts0d + Pts0dtzH−
2

x
FFStz

d

dx
DFsxdG

x=0

− F d

dx
FStz

d

dx
DFsxdG

x=0
J

+ Pts0dtzS2

x
−

d

dx
DFStz

d

dx
DFsxd. s30d

In the scaling limit, the first term at the left-hand side
sLHSd is of order 1/t. Assuming that the density of clusters

of zero masssholes in the column pictured decays as

Pts0d ,
1

tb , s31d

the second term at the LHS and the second term at the right
hand sidesRHSd of Eq. s30d are both of order 1/tb. The first
term in the RHS, related to the diffusion of aggregated par-
ticles, is of order 1/t2z. Since cluster breaking competes with
deposition and recalling that the coarsening exponent in the
problem with only deposition and diffusion isz=1/2, we
expect that, in the present system,zø1/2 for anya. The last
term in the RHS, associated with cluster breaking, is of order
1/tsb−zad, which clearly dominates over the terms which scale
as 1/tb for any a.0. Thus, we conclude that the terms as-
sociated with aggregated particle diffusionffirst of the RHS
of Eq. s30dg and with cluster breakingslast of the RHSd are
dominant fora.0 and must cancel each other, while the
remaining terms are subdominant contributions which must
also cancel. From the dominant terms, we obtain

2z= b − za s32d

and from the subdominant terms we obtain

b = 1, s33d

which gives the coarsening exponent

z= 1/s2 + ad. s34d

The value ofz agrees with that obtained from scaling
arguments and in simulations. In order to compare the den-
sity of single vacancies in the column problem,Pts0d, and
the density of double vacancies in the original particle prob-
lem, r00std, we consider that the total length of the lattice in
the column problem,L0, is smaller than the lengthL by a
factor of the order of the average cluster sizessee Figs. 6 and
7d, which scales astz. Consequently

r00std , Pts0d/tz , t−s1+zd, s35d

which also agrees with the scaling arguments of Sec. II and
simulation results. Thee andg dependences of average clus-
ter size and densities of vacancies in both pictures, predicted
in Secs. II and III, also follow from Eq.s30d.

Also notice that, fora,0, the cluster breaking term of
Eq. s30d is not dominant anymore and we obtainz=1/2, as
in the problem without that mechanismsRef. f6gd.

V. DISTRIBUTIONS OF CLUSTER LENGTHS

An equation for the one-variable scaling functionFsxd
follows from the balance of the dominant terms in Eq.s30d,
related to diffusion of aggregated particles and cluster
breaking:

gx2Fsxd
t2z = Pts0dtzH2

x
FFS− tz

d

dx
DFsxdG

x=0

+ F d

dx
FS− tz

d

dx
DFsxdG

x=0
J

+ Pts0dtzS d

dx
−

2

x
DFS− tz

d

dx
DFsxd. s36d
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Physically, it means that the dynamics in the long time re-
gime is dominated by diffusion of aggregated particles,
which forms larger clusters at the expense of neighboring
ones, and cluster breaking, which restores a relatively ran-
dom size distribution after the onset of a vacancy in the
column picture sdouble vacancy in the particle pictured.
Deposition becomes a rare process, as expected with the
large probabilities of cluster breaking fora.0, and does not
contribute to determine the main features of the scaling func-
tion.

Instead of solving Eq.s36d for the functionFsxd, which
would involve fractional derivatives for noninteger expo-
nentsa, we consider the same balance of contributions of
diffusion of aggregated particles and cluster breaking in the
original master equationss10d, s11d, and s14d. They can be
rewritten in terms of the functiongsyd defined in Eq.s27d. At
this point, we must consider thatPts0d scales as

Pts0d <
sk0/kd

t
, s37d

wherek0,os1d, since the survival time of those vacancies is
inversely proportional to the amplitudek of the rate of clus-
ter breakingfEq. s3dg. We are thus led to

g

t2z

d2gsyd
dy2 +

sk0/kd
t

tzktzsa−1dF2E
y

`

dy8y8sa−1dgsy8d − yagsyd

− dsydE
0

`

dy8y8sa−1dgsy8dG = 0. s38d

For y.0, Eq. s38d leads to

g1g- = yag8 + s2 + adya−1g, s39d

with g1=g /k0. From this equation we obtain the distribution
in the form

gsyd , ymexps− Aynd, s40d

with

n = 1 +a/2, m = 1 −a/4, A , g−1/2, s41d

which suggests that the shapes of the distributions of cluster
lengths also depend on the cluster breaking exponents.

The results from the independent interval approximation
share some aspects with those obtianed from rate equations
of coagulation and fragmentation in Refs.f17,18g. For a con-
stant fragmentation kernel, they obtain an equation for
cluster-size distribution function which is the same as Eq.
s39d with a=1, and consequently a decay as Eq.s43d, but
other distributions are obtained for different kernels.

This prediction can be compared with simulation results.
In all cases, the distributions were obtained by taking the
length of each cluster only once while spanning the lattice at
a fixed simulation time. Thus our estimates can be directly
compared with the predictions from the column picture. On
the other hand, if a site average had been done during the
simulations, a rescaling of the predictions of the column pic-
ture would be necessary.

In Figs. 8sad and 8sbd we show the scaled cluster length
distributions fora=2 and 4, respectively. From Eqs.s40d and

s41d, it is expected that lnfsetdzPtsmd /ymg decreases linearly
with yn, with

y ; m/setdz s42d

sm=1/2 andn=2 for a=2, m=0 andn=3 for a=4d. Here a
factor e−z multiplies the variable in Eq.s27d.

However, the curved shapes of the plots in Figs. 8sad and
8sbd disagree with the predictions of this independent cluster
approximation. On the other hand, it was observed that the
data for all values ofa can be fitted by a universal distribu-
tion of the form

gsyd ; setdzPtsmd , exps− y3/2d. s43d

This is illustrated in Figs. 9sad and 9sbd for a=0.5 anda
=1, respectively, in which the deviations from Eqs.s40d and
s41d are relatively smallfindeed, fora=1, the exponent 3/2
of the universal distribution is also predicted by Eq.s41dg,
and in Figs. 10sad and 10sbd for a=2 and 4, respectively.
Least squares fits of the data for the largest lengthssdashed
lines shifted two units to the right in Figs. 9 and 10d confirm
the validity of this universal scaling.

In order to explain this unexpected result, we must pay
attention to the details of the dynamical process during the
coarsening process, which comes from a balance between
aggregated particle diffusion and cluster breaking, and its
connection to diffusion-reaction related problems. Turning
back to the original particle picture of the problem, during
almost all the time, the dynamics is equivalent to diffusion of
vacancies and scattering of one vacancy upon collision of
two or more vacancies. This scattering of a vacancy corre-

FIG. 8. Scaled probability of a cluster of sizem as a function of
the scaled mass according to the prediction of the independent in-
terval approximationfEqs. s40d and s41dg, for sad a=2, e=0.001,
z=1/4, t=43107; sbd a=4, e=0.001,z=1/6, t=53108.

FIG. 9. Scaled probability of a cluster of sizem as a function of
the scaled massy3/2, for sad a=0.5,e=0.001,z=0.4, t=43106; sbd
a=1, e=0.001,z=1/3, t=43106.
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sponds to the breakup of a cluster at a random internal point
ssee Figs. 2 and 7d. Thus, while diffusion of a vacancy is the
mechanism that leads to the formation of large clusters lo-
cally, the collision of vacancies restores random distribution
of cluster lengths around the average value.

Focusing on a specific diffusing vacancy, it may be
viewed as a particle in an infinite sea of trapsf12–14g, the
latter represented by the other vacancies. Subsequent colli-
sions approximately correspond to the random walk starting
in the origin and the absorption by a trap after a certain
time—however, contrary to the trapping process, the vacancy
is thrown away and not absorbed. Thus the probability of a
cluster of lengthx in our model can be approximated by the
probability of finding a particle at distancex from the origin
in the trapping problemsTPd with an infinite sea of mobile
traps.

In Refs.f13g andf14g, the TP was studied analytically and
it was shown that the probability of the particle surviving at
time t, being always located in the intervalf−l /2 ,l /2g, and
that no trap has entered this region up to timet is given by

PTPstd , expf− l1rTet1/2 − srTl + l2et/l2dg. s44d

In Eq. s44d, rT is the density of trapssof order of the inverse
average cluster length,kxl in our problemd, l1 and l2 are
constants of order of a unit, and it is assumed that the diffu-
sion coefficients of the particles and the traps are both equal
to e. This result was used in Ref.f13g to estimate a lower
bound for the probability of survival of a particle at timet
and it was shown to converge to the upper bound they also
estimated, thus providing an exact limit for that probability
at long times.

For a given timet, that distribution is peaked aroundl
= lM, where

lM = Fl2et

rT
G1/3

. s45d

Instead of the broad displacement distribution of a free par-
ticle problem, the surviving particles at timet are much more
probably located around the distancelM from the origin.
Thus, the probability of finding a surviving particle, which
decays in time, may be expressed in terms of this most prob-
able distancelM from the origin. In our problem of a diffus-
ing vacancy, it corresponds to finding a cluster of lengthx
, lM at that time after the last collision with another vacancy.
This gives a distribution for cluster lengths

Psxd , expF−
l1

l2
1/2rT

3/2x3/2 − 3rTxG , expf− Csx/kxld3/2g,

s46d

where we considered thatrT,1/kxl andC is a constant.
The above result agrees with those from simulation for all

values of the parametera. In its derivation, a time average
was performed, which corresponds to a time average in the
cluster breaking problem within a large time range for single
vacancy diffusion, but small for deposition of new particles
and coarsening. Indeed, this is a suitable interpretation for
the fixed-time results of Figs. 8–10, which were obtained
from several snapshots of the system near the timest given
above the plots.

The discrepancy with the prediction of the theoretical
analysis based on the independent interval approximation is
related to the particular form of the distribution of surviving
particles displacements in the TP. The former approximation
does not capture the correlated nature of the rare processes.

Finally, we observe that the data for several values ofa in
Figs. 9 and 10, although lying approximately in the same
region, do not collapse into a single curve, which indicates
the presence of corrections to the scaling in Eq.s43d which
do depend ona.

VI. SUMMARY AND CONCLUSION

We studied one-dimensional exclusion models with par-
ticle diffusion, reversible attachment to clusters, and deposi-
tion mechanisms at large vacancies competing with breakup
of neighboring clusters. These models aim at representing
coarsening of aggregates subject to internal stress, so that the
increase of density when there is free space available is re-
stricted by breakup that leads to internal relief.

Different dependencies of the cluster breaking rate on the
cluster length were considered, involving the cluster break-
ing exponenta. Simulation results show cluster size growth
as x, t1/s2+ad, which was explained using heuristic scaling
arguments. The analytical treatment of the master equation
with an independent cluster approximation for joint probabil-
ity distributions supports this prediction, as well as the scal-
ing of the density of double vacancies obtained numerically.

Despite the dependence of the coarsening exponent on the
exponenta, universal probability distributions of large clus-
ters were obtained, in the formPsxd,exps−x3/2d. This result
shows limitations of the independent interval approximation
for the treatment of rare eventsscluster lengths much larger
than the average valued which emerge from the diffusion of
vacancies and their survival at long times without being scat-
tered by collision with other vacancies, which corresponds to
cluster breaking and restores a random distribution of cluster
lengths. However, the connection of the problem with the
problem of a particle diffusing in an infinite sea of mobile
particles provides an explanation for that distribution, which
may be viewed as snapshots of the system at time intervals
during which the coarsening process was negligible.

FIG. 10. Scaled probability of a cluster of sizem as a function
of the scaled massy3/2, for sad a=2, e=0.001,z=1/4, t=43107;
sbd a=4, e=0.001,z=1/6, t=53108.
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We expect that the models presented above and the com-
bination of different methods to explain their scaling behav-
iors can be used to understand further nonequilibrium sys-
tems. A particularly interesting application would be the
study of two-dimensional systems subject to the same con-
ditions, in order to describe coarsening of adatom islands in
cases where there is a mismatch of lattice parameters with
the substrate and consequent stress or strain of those islands.
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